hence the right inequality holds.

Using the Cauchy-Schwarz inequality, we obtain

$$\left(\sum_{k=1}^{n} x_{k}\right)^{2} = \left(\sum_{k=1 \text{ cyclic}}^{n} 1 \cdot \frac{x_{k} + x_{k+1}}{2}\right)^{2}$$

$$\leq \left(1^{2} + 1^{2} + \dots + 1^{2}\right) \left(\sum_{k=1 \text{ cyclic}}^{n} \frac{(x_{k} + x_{k+1})^{2}}{4}\right)$$

$$= n \left(\sum_{k=1 \text{ cyclic}}^{n} \frac{(x_{k} + x_{k+1})^{2}}{4}\right).$$

Now, the inequality $\frac{(x_k+x_{k+1})^2}{4} \leq \frac{x_k^2+x_kx_{k+1}+x_{k+1}^2}{3}$ holds as being equivalent to $(x_k-x_{k+1})^2 \geq 0$. Thus,

$$\left(\sum_{k=1}^{n} x_{k}\right)^{2} \leq n \left(\sum_{k=1 \text{ cyclic}}^{n} \frac{x_{k}^{2} + x_{k} x_{k+1} + x_{k+1}^{2}}{3}\right)$$

and this gives the left inequality at once.

Also solved by the proposer.

58. Corrected. Proposed by Arkady Alt, San Jose, California, USA. Let P be arbitrary interior point in a triangle ABC and r be inradius. Prove that

$$\frac{a^2}{d_a(P)} + \frac{b^2}{d_b(P)} + \frac{c^2}{d_c(P)} \ge 36r$$

if $d_a(P)$, $d_b(P)$ and $d_c(P)$ are the distances from the point P to the sides BC, CA and AB respectively.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria. (The original statement has r^2 instead of r, and it is clearly not correct, because it is not homogeneous.)

Let s = (a + b + c)/2. For q > 1 we have

$$\frac{2s}{3} = \frac{a+b+c}{3} \le \left(\frac{a^{\frac{q+1}{2}} + b^{\frac{q+1}{2}} + c^{\frac{q+1}{2}}}{3}\right)^{\frac{2}{q+1}}$$

Equivalently

$$3^{1-q}2^{q+1}s^{q+1} \le \left(a^{\frac{q+1}{2}} + b^{\frac{q+1}{2}} + c^{\frac{q+1}{2}}\right)^2.$$

Now, let F_a , F_b , F_c and F represent the areas of the triangles PBC, PCA, PAB and ABC respectively. Clearly, we have $2F_a = ad_a(P)$, $2F_b = bd_b(P)$ and $2F_c = cd_c(P)$. Consequently, using Cauchy-Schwarz inequality, we have

$$3^{1-q}2^{q+1}s^{q+1} \le \left(a^{\frac{q+1}{2}} + b^{\frac{q+1}{2}} + c^{\frac{q+1}{2}}\right)^{2}$$

$$\le \left(\frac{a^{q+1}}{2F_{a}} + \frac{b^{q+1}}{2F_{b}} + \frac{c^{q+1}}{2F_{c}}\right) \left(2(F_{a} + F_{b} + F_{c})\right)$$

$$\le 2F \cdot \left(\frac{a^{q}}{d_{a}(P)} + \frac{b^{q}}{d_{b}(P)} + \frac{c^{q}}{d_{c}(P)}\right)$$

Thus, since F = sr we obtain

$$3^{1-q} 2^q s^q \le r \cdot \left(\frac{a^q}{d_a(P)} + \frac{b^q}{d_b(P)} + \frac{c^q}{d_c(P)} \right)$$

Finally, using the well-known inequality: $s \ge 3\sqrt{3}r$ we obtain

$$3^{1+q/2}2^q r^{q-1} \le \frac{a^q}{d_a(P)} + \frac{b^q}{d_b(P)} + \frac{c^q}{d_c(P)}.$$

For q = 1 we get

$$6\sqrt{3} \le \frac{a}{d_a(P)} + \frac{b}{d_b(P)} + \frac{c}{d_c(P)}$$

and for q=2 we get

$$36r \le \frac{a^2}{d_a(P)} + \frac{b^2}{d_b(P)} + \frac{c^2}{d_c(P)}.$$

which is the announced inequality.

59. Proposed by Marcel Chiriță, Bucharest, Romania. Solve in real numbers the system

$$2^{x} + 2^{y} = 12
 3^{x} + 4^{z} = 11
 3^{y} - 4^{z} = 25
 .$$

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and

Technology, Damascus, Syria. Let $\alpha = \ln 2/\ln 3 \in (0,1)$ so that the second equation is equivalent to $2^x = (11 - 4^z)^{\alpha}$ and the third one is equivalent to $2^y = (25 + 4^z)^{\alpha}$ the first equation is then equivalent to $(11 - 4^z)^{\alpha} + (25 + 4^z)^{\alpha} = 12$. Now, consider $f(t) = (11 - t)^{\alpha} + (25 + t)^{\alpha}$ for $t \in [0, 11)$. Clearly

$$f'(t) = \alpha \left((25+t)^{\alpha-1} - (11-t)^{\alpha-1} \right) < 0$$

because $\alpha-1<0$ and $11-t\leq 11<25+t$ for $t\in [0,11)$. It follows that f is strictly decreasing on [0,11), and since $f(2)=9^{\alpha}+27^{\alpha}=2^2+2^3=12$ we conclude that 2 is the only solution of the equation f(t)=12 that belongs to [0,11). It follows that the equation $f(4^z)=12$ has z=1/2 as unique solution. But then $2^x=(11-4^z)^{\alpha}=2^2$ and $2^y=(25+4^z)^{\alpha}=2^3$. Therefore, the proposed system has a unique real solution which is $(x,y,z)=(2,3,\frac{1}{2})$.

Solution 2 by Adnan Ali (student), Mumbai, India.

Eliminating 4^z , we have the system

$$2^x + 2^y = 12 3^x + 3^y = 36$$

We prove that the only solutions for the above system are $\{x,y\} = \{2,3\}$. The proof is based on the following claim: Fix positive constants a,b and k > 1, then the equation in t:

$$t^k + (a-t)^k = b, \ 0 \le t \le a$$

may have at most two solutions. Indeed, we let $f(t)=t^k+(a-t)^k-b$ and observe that since k-1>0, the derivative $f'(t)=k(t^{k-1}-(a-t)^{k-1})$ is negative for $t<\frac{a}{2}$, vanishes at $t=\frac{a}{2}$, and is positive for $t>\frac{a}{2}$. Hence f(t) is strictly decreasing from 0 to $\frac{a}{2}$ and strictly increasing from $\frac{a}{2}$ to a, and our claim follows.

Now we let $t=2^x$, $r=2^y$ and $k=\frac{\ln 3}{\ln 2}>1$ so that the system is now